Sister Nibedita Government General Degree College for Girls

Department of Mathematics

1. Separation of Variables:

A fundamental technique for obtaining solutions of linear partial differential equations is the method of separation of variables. This means that we look for particular solutions in the form u(x, y) = X(x)Y(y) and try to obtain differential equations for X(x) and Y(y). These equations will contain a parameter called the separation constant. The function u(x, y) is called a separated solution.

Example 1.1: Solve $u_{xx} - 2u_x + u_y = 0$

Solution: If we let u(x, y) = X(x)Y(y) and substitute in equation, we obtain

$$X''Y - 2X'Y + XY' = 0 \Longrightarrow \frac{X'' - 2X'}{X} = \frac{-Y'}{Y} = k$$

Where k is separation constant. These equations may be written in the more standard form

$$X'' - 2X' - kX = 0$$
 (1)

$$Y' + kY = 0$$
 (2)
From (1) we get $X(x) = e^x (A_1 e^{x\sqrt{1+k}} + A_2 e^{-x\sqrt{1+k}})$ and From (2) we get $Y(y) = A_3 e^{-ky}$

where A_1, A_2 and A_3 are constants.

Thus the solution is $u(x, t) = e^{x-ky}(Ae^{x\sqrt{1+k}} + Be^{-x\sqrt{1+k}})$

2. Separated solution of Laplace's equation

Consider a two dimensional Laplace equation in cartesian coordinate: $\nabla^2 u = u_{xx} + u_{yy} = 0$.

If we let u(x, y) = X(x)Y(y) and substitute in Laplace's equation, we obtain

$$X''(x)Y(y) + X(x)Y''(y) = 0$$

Dividing by X(x)Y(y) (assumed to be nonzero), we obtain

$$\frac{X''(x)}{X(x)} = -\frac{Y''(y)}{Y(y)} = k$$

Where k is separation constant. These equations may be written in the more standard form

X'' - kX = 0 (1) Y'' + kY = 0 (2) Three cases arise,

Case 1. If k > 0, we write $k = p^2$, where p is real. The general solutions to (1) and (2) are

 $X(x) = A_1e^{px} + A_2e^{-px}$ and $Y(y) = A_3 \cos py + A_4 \sin py$ where A_1, A_2, A_3, A_4 are arbitrary constants. Thus the solution is $u(x, y) = (A_1e^{px} + A_2e^{-px})(A_3 \cos py + A_4 \sin py)$

Case 2. If k = 0, we have the equations X'' = 0, Y'' = 0, for which the general solutions to (1) and (2) are linear functions: $X(x) = A_1x + A_2$ and $Y(y) = A_3y + A_4$ where A_1, A_2, A_3, A_4 are arbitrary constants.

Thus the solution is $u(x, y) = (A_1x + A_2)(A_3y + A_4)$

Case 3. If k < 0, we write $k = -p^2$. The general solutions of (1) and (2) are

 $X(x) = A_1 \cos px + A_2 \sin px$ and $Y(y) = A_3 e^{py} + A_4 e^{-py}$ where A_1, A_2, A_3, A_4 are arbitrary constants.

Thus the solution is $u(x, y) = (A_1 \cos px + A_2 \sin px)(A_3 e^{py} + A_4 e^{-py})$

Example 2.1: Find the separated solutions of Laplace's equation $u_{xx} + u_{yy} = 0$ in the region

0 < x < L, y > 0 that satisfy the boundary conditions u(0, y) = 0, u(L, y) = 0, u(x, 0) = 0.

Solution: From the discussion in subsection 2 we have the separated solutions of three types.

In the first case, using the BC we must have

 $0 = u(0, y) = (A_1 + A_2)(A_3 \cos py + A_4 \sin py), \text{ so } A_2 = -A_1,$

i.e. $u(x, y) = 2A_1 \sinh px(A_3 \cos py + A_4 \sin py)$

Again, $0 = u(L, y) = 2A_1 \sinh pL(A_3 \cos py + A_4 \sin py)$ implies that $A_1 = 0$,

So, in this case only trivial solution u(x, y) = 0 is possible that satisfy the boundary conditions.

In the second case, using the BC we must have $0 = u(0, y) = A_2(A_3y + A_4)$, so $A_2 = 0$,

i.e. $u(x, y) = A_1 x (A_3 y + A_4)$

Again, $o = u(L, y) = A_1L(A_3y + A_4)$, so $A_1 = 0$. Therefore, in this case only trivial solution u(x, y) = 0 is possible that satisfy the boundary conditions.

In the third case, using the BC we must have

$$0 = u(0, y) = A_1(A_3 e^{py} + A_4 e^{-py})$$
, so that $A_1 = 0$;

i.e. $u(x, y) = A_2 \sin px(A_3 e^{py} + A_4 e^{-py})$

Again, $0 = u(L, y) = A_2 \sin pL (A_3 e^{pL} + A_4 e^{-pL})$ has a nonzero solution if and only if

 $\sin pL = 0$, which is satisfied if and only if $pL = n\pi$ *i.e.* $p = \frac{n\pi}{L}$ for some n = 1,2,3, To satisfy the boundary condition u(x, 0) = 0, we must have $A_3 + A_4 = 0$, *i.e.* $A_4 = -A_3$

Therefore $u(x, y) = 2A_2A_3 \sin \frac{n\pi x}{L} \sinh \frac{n\pi y}{L}$

Writing = $2A_2A_3$, the corresponding eigen functions are

$$u_n(x, y) = A_n \sin \frac{n\pi x}{L} \sinh \frac{n\pi y}{L}$$
 where n = 1,2,3, ...

Thus, by the principle of superposition, we write the solution is of the form

$$u(x,y) = \sum_{n=1}^{\infty} A_n \sin \frac{n\pi x}{L} \sinh \frac{n\pi y}{L}$$

Example 2.2: Solve $\nabla^2 u = 0$, $0 \le x \le \pi$, $0 \le y \le \pi$

Satisfying the initial boundary condition:

u(0, y) = 0, $u(\pi, 0) = 0$, $u(x, \pi) = 0$ and $u(x, 0) = \sin^2 x$

Solution: Similar to the Example 2.1, one of the acceptable general solution is

$$u(x, y) = (c_3 \cos px + c_4 \sin px)(c_1 e^{py} + c_2 e^{-py})$$

Using the BC: $u(0, y) = 0 \Rightarrow c_3 = 0$ and $u(x, \pi) = 0 \Rightarrow c_2 = c_1 e^{2p\pi}$ and $u(\pi, 0) = 0 \Rightarrow c_4 \sin p\pi = 0 \Rightarrow p = n$ where $n = 1, 2, 3 \dots$

Therefore, the corresponding eigen functions are

$$u_n(x,t) = A_n(e^{ny} - e^{2n\pi}e^{-ny})\sin nx$$
 where $n = 1,2,3...$

Thus, by the principle of superposition, we write the solution is of the form

$$u(x,y) = \sum_{n=1}^{\infty} A_n (e^{ny} - e^{2n\pi} e^{-ny}) \sin nx$$
 (1)

Using the condition $\sin^2 x = u(x, 0) = \sum_{n=1}^{\infty} A_n (1 - e^{2n\pi}) \sin nx$

This is half range fourier series expansion of $\sin^2 x$ in $(0, \pi)$ and hence

$$A_n = \frac{2}{\pi(1 - e^{2n\pi})} \int_0^{\pi} \sin^2 x \sin n\pi \, dx \quad (2) \qquad \text{(Calculate } A_n)$$

Hence the solution of given problem is given by (1) where A_n is given by (2)

3. Separated solution of Heat equation

Consider the equation $u_t = \alpha u_{xx}$

If we let u(x,t) = X(x)T(t) and substitute in Heat equation, we obtain

$$\frac{X''}{X} = \frac{1}{\alpha} \frac{T'}{T} = k, (a \text{ seperation constant})$$

Soumita Kundu

Then we have

$$X''(x) - k X(x) = 0$$
 (1)

$$T'(t) - \alpha k T(t) = 0 \tag{2}$$

Three cases arise,

Case 1. If k > 0, we write $k = p^2$, where p is real. The general solutions to (1) and (2) are

 $X(x) = A_1 e^{px} + A_2 e^{-px}$ and $T(t) = A_3 e^{\alpha p^2 t}$ where A_1, A_2, A_3 are arbitrary constants. Thus the solution is $u(x, t) = e^{\alpha p^2 t} (A_1' e^{px} + A_2' e^{-px})$

Case 2. If k = 0, we have the equations X''(x) = 0, T'(t) = 0, for which the general solutions (1) and (2) are linear functions: $X(x) = A_1x + A_2$ and $T(t) = A_3$ where A_1, A_2, A_3 are arbitrary constants.

Thus the solution is $u(x, t) = (A_1'x + A_2')$

Case 3. If k < 0, we write $k = -p^2$. The general solutions of (1) and (2) are

$$X(x) = A_1 \cos px + A_2 \sin px$$
 and $T(t) = A_3 e^{-\alpha p^2 t}$ where A_1, A_2, A_3 are arbitrary constants.

Thus the solution is $u(x, t) = e^{-\alpha p^2 t} (A'_1 \cos px + A'_2 \sin px)$

Where $A'_{1} = A_{1}A_{3}$ and $A'_{2} = A_{2}A_{3}$

Example 3.1: Find the separated solutions u(x, t) of the heat equation $u_{xx} - u_t = 0$ in the region 0 < x < L, t > 0 that satisfy the boundary conditions u(0, t) = 0, u(L, t) = 0.

Solution. From the discussion in subsection 3 we have the separated solutions of three types.

In case 1 Using the boundary condition we get $0 = u(0,t) = (A'_1 + A'_2)e^{p^2t}$ i.e. $A'_2 = -A'_1$ and $0 = u(L,t) = 2A'_1 e^{p^2t} \sinh pL$. Therefore $A'_1 = A'_2 = 0$

So, in this case only trivial solution u(x, t) = 0 is possible that satisfy the boundary conditions.

In case 2 Using the boundary condition we get $0 = u(0,t) = A'_1 \cdot 0 + A'_2$ i.e. $A'_2 = 0$ and $0 = u(L,t) = A'_1L$. Therefore $A'_1 = A'_2 = 0$

So, in this case only trivial solution u(x, t) = 0 is possible that satisfy the boundary conditions.

In case 3 Using the boundary condition we get $0 = u(0, t) = A'_1 e^{-p^2 t}$ i.e. $A'_1 = 0$ and

 $0 = u(L, t) = A'_2 e^{-p^2 t} \sin pL$. In order to obtain nonzero solution, $\sin pL = 0$, which is satisfied if and only if $pL = n\pi$ *i.e.* $p = \frac{n\pi}{L}$ for some n = 1,2,3,

Therefore, the corresponding eigen functions are

$$u_n(x,t) = A_n \exp\left(-\left(\frac{n\pi}{L}\right)^2 t\right) \sin\frac{n\pi}{L} x \qquad \text{where } n = 1,2,3 \dots$$

Soumita Kundu

Thus, by the principle of superposition , we write the solution is of the form

Therefore
$$u(x,t) = \sum_{n=1}^{\infty} A_n \exp\left(-\left(\frac{n\pi}{L}\right)^2 t\right) \sin\frac{n\pi}{L} x$$
, where n = 1,2,3,

Example 3.2: Solve the one dimensional diffusion equation in the region $0 \le x \le \pi, t \ge 0$ subject to the conditions

(i) u(x, t) remains finite as $t \to \infty$

(ii) u = 0, if x = 0 and π for all t

(iii) At
$$t = 0$$
, $u(x, t) = \begin{cases} x & 0 \le x \le \frac{\pi}{2} \\ \pi - x & \frac{\pi}{2} \le x \le \pi \end{cases}$

Solution: From the discussion in subsection 3 we have the separated solutions of three types.

In case 1, the first condition demands that u(x, t) should remain finite as $t \to \infty$ is not satisfied. Therefore we reject this solution.

In case 2, Using the boundary condition we get $0 = u(0,t) = A'_1 \cdot 0 + A'_2$ i.e. $A'_2 = 0$ and $0 = u(\pi, t) = A'_1 \pi$. Therefore $A'_1 = A'_2 = 0$.

So, in this case only trivial solution u(x, t) = 0 is possible that satisfy the boundary conditions. Since, we are looking for a non-trivial solution, we reject this case.

In case 3, the solution is $u(x,t) = e^{-\alpha p^2 t} (A'_1 \cos px + A'_2 \sin px)$

Using the BC (ii), we have at $0 = u(0, t) = A'_1 e^{-\alpha p^2 t}$ implies $A'_1 = 0$ and

 $0 = u(\pi, 0) = \sin p\pi \Rightarrow p = n$, where n = 1, 2, ...

Hence the solution is found to be of the form

 $u_n(x,t) = A_n e^{-\alpha n^2 t} \sin nx$ where n = 1,2,...

Using the principle of superposition, the solution is

 $u(x,t) = \sum_{n=1}^{\infty} A_n e^{-\alpha n^2 t} \sin nx$

Using the third condition we get $u(x, 0) = \sum_{n=1}^{\infty} A_n \sin nx$

Which is a half range Fourier sine series and therefore

$$A_n = \frac{2}{\pi} \int_0^{\pi} u(x,0) \sin nx \, dx = \frac{2}{\pi} \left[\int_0^{\frac{\pi}{2}} x \sin nx \, dx \, + \int_{\frac{\pi}{2}}^{\pi} (\pi - x) \sin nx \, dx \right]$$
$$\Rightarrow A_n = \frac{4}{n^2 \pi} \sin(\frac{n\pi}{2})$$

Thus, the required solution is $u(x,t) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{e^{-\alpha n^2 t} \sin(\frac{n\pi}{2})}{n^2} \sin nx$

4. Separated solution of Wave Equation

Consider the wave equation: $u_{tt} = c^2 u_{xx}$

If we let u(x,t) = X(x)T(t) and substitute in Heat equation, we obtain

$$\frac{X''}{X} = \frac{1}{c^2} \frac{T''}{T} = k, (a \text{ seperation constant})$$

Then we have

$$X''(x) - k X(x) = 0$$
 (1)

$$T''(t) - c^2 k T(t) = 0$$
⁽²⁾

Three cases arise,

Case 1. If k > 0, we write $k = p^2$, where p is real. The general solutions to (1) and (2) are

 $X(x) = A_1e^{px} + A_2e^{-px}$ and $T(t) = A_3e^{cpt} + A_4e^{-cpt}$ where A_1, A_2, A_3, A_4 are arbitrary constants. Thus the solution is $u(x, t) = (A_1e^{px} + A_2e^{-px})(A_3e^{cpt} + A_4e^{-cpt})$

Case 2. If k = 0, we have the equations X''(x) = 0, T''(t) = 0, for which the general solutions (1) and (2) are linear functions : $X(x) = A_1x + A_2$ and $T(t) = A_3t + A_4$ where A_1, A_2, A_3, A_4 are arbitrary constants. Thus the solution is

 $u(x,t) = (A_1x + A_2)(A_3t + A_4)$

Case 3. If k < 0, we write $k = -p^2$. The general solutions of (1) and (2) are

 $X(x) = A_1 \cos px + A_2 \sin px$ and $T(t) = A_3 \cos cpt + A_4 \sin cpt$ where A_1, A_2, A_3, A_4 are arbitrary constants.

Thus the solution is $u(x,t) = (A_3 \cos cpt + A_4 \sin cpt)(A_1 \cos px + A_2 \sin px)$

Example 4.1: Obtain the solution of the wave equation $u_{tt} = c^2 u_{xx}$ under the following conditions:

(i)
$$u(0,t) = u(2,t) = 0$$

(ii) $u(x, 0) = \sin^3 \frac{\pi x}{2}$

(iii) $u_t(x, 0) = 0$

Solution: From the discussion in subsection 4 we have the separated solutions of three types.

In case 1, using the BC(i) we get, $A_1 + A_2 = 0$ and $A_1e^{2p} + A_2e^{-2p} = 0$

The above two equations possess non-trivial solution iff

 $\begin{vmatrix} 1 & 1 \\ e^{2p} & e^{-2p} \end{vmatrix} = 0 \Rightarrow e^{4p} = 1 \Rightarrow 4p = 0 \Rightarrow p = 0 \text{ which is against the assumption in the case 1.}$ Hence, this solution is not acceptable.

In case 2, using the BC (i) we get $A_10 + A_2 = 0$ and $A_1 \cdot 2 + A_2 = 0 \Rightarrow A_1 = A_2 = 0$.

Hence, only a trivial solution is possible. Since, we are looking for a non-trivial solution, we consider the case 3 and the solution in this case is of the form

$$u(x,t) = (A_3 \cos cpt + A_4 \sin cpt)(A_1 \cos px + A_2 \sin px)$$

Using the condition u(0, t) = 0 gives $A_1 = 0$. Also condition (iii) implies $A_4 = 0$. The condition u(2, t) = 0 gives $sin 2p = 0 \Rightarrow p = \frac{n\pi}{2}$ where n = 1,2,3

Thus the possible solution is $u(x,t) = \sum_{n=1}^{\infty} A_n \sin \frac{n\pi x}{2} \cos \frac{n\pi ct}{2}$

Finally using the condition (iii), we obtain $\sum_{n=1}^{\infty} A_n \sin \frac{n\pi x}{2} = \sin^3 \frac{\pi x}{2} = \frac{3}{4} \sin \frac{\pi x}{2} - \frac{1}{4} \sin \frac{3\pi x}{2}$

Which gives $A_1 = \frac{3}{4}$, $A_3 = -\frac{1}{4}$, while all other A_n 's are zero. Hence, the required solution is

$$u(x,t) = \frac{3}{4}\sin\frac{\pi x}{2}\cos\frac{\pi ct}{2} - \frac{1}{4}\sin\frac{3\pi x}{2}\cos\frac{3\pi ct}{2}$$